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Abstract

Oliveira, Aiko R.; Casanova, Marco (Advisor). Text-to-SQL on Real
World Datasets. Rio de Janeiro, 2024. 44p. Trabalho de Conclusão de
Curso – Departamento de Informática, Pontifícia Universidade Católica
do Rio de Janeiro.

In the rapidly evolving field of Natural Language Processing (NLP), the
task of translating natural language queries into SQL queries (Text-to-SQL)
has garnered significant attention due to its potential to simplify database
interactions for non-technical users. This final project, titled “Text-to-SQL on
Real World Datasets,” explores innovative methods to enhance the accuracy
and efficiency of Text-to-SQL systems, specifically focusing on real-world
databases with complex schemas.

The project leverages the Retrieval-Augmented Generation (RAG) tech-
nique to improve Text-to-SQL accuracy by integrating external data sources
and fine-tuning strategies. A combination of synthetic dataset generation and
prompt strategies is employed to enhance the model’s performance. The Mon-
dial dataset, known for its complexity and richness in geographic data, serves
as the benchmark for evaluating the proposed techniques.

The study aims to develop a robust Text-to-SQL framework capable of
handling diverse and complex queries, thereby making database interactions
more intuitive and accessible. The methodologies, experiments, and findings
documented in this report contribute valuable insights to ongoing research in
NLP and database management systems.

Keywords
LLM; NLP; RAG; GLM; Text-To-SQL.



Resumo

Oliveira, Aiko R.; Casanova, Marco. Text-to-SQL on Real World
Datasets. Rio de Janeiro, 2024. 44p. Trabalho de Conclusão de Curso
– Departamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

No campo em rápida evolução do Processamento de Linguagem Natural
(NLP), a tarefa de traduzir consultas em linguagem natural para consultas
SQL (Text-to-SQL) tem ganhado atenção significativa devido ao seu potencial
para simplificar interações com bancos de dados para usuários não técnicos.
Este projeto final, intitulado “Text-to-SQL em Conjuntos de Dados do Mundo
Real,” explora métodos inovadores para melhorar a precisão e a eficiência dos
sistemas Text-to-SQL, focando especificamente em bancos de dados do mundo
real com esquemas complexos.

O projeto utiliza a técnica de Geração Aumentada por Recuperação
(RAG) para melhorar a precisão do Text-to-SQL, integrando fontes de dados
externas e estratégias de ajuste fino. Uma combinação de geração de conjuntos
de dados sintéticos e estratégias de prompts é empregada para aprimorar o
desempenho do modelo. O conjunto de dados Mondial, conhecido por sua
complexidade e riqueza em dados geográficos, serve como referência para
avaliar as técnicas propostas.

O objetivo do estudo é desenvolver uma estrutura robusta de Text-
to-SQL capaz de lidar com consultas diversas e complexas, tornando as
interações com bancos de dados mais intuitivas e acessíveis. As metodologias,
experimentos e descobertas documentadas neste relatório contribuem com
insights valiosos para a pesquisa contínua em NLP e sistemas de gerenciamento
de bancos de dados.

Palavras-chave
LLM; NLP; RAG; GLM; Text-To-SQL.
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1 Introduction

In the rapidly evolving field of Natural Language Processing (NLP), the
task of translating natural language queries into SQL queries (Text-to-SQL)
has garnered significant attention due to its potential to simplify database
interactions for non-technical users. This final project, titled “Text-to-SQL on
Real World Datasets”, explores innovative methods to enhance the accuracy
and efficiency of Text-to-SQL systems, specifically focusing on real-world
databases with complex schemas.

The journey of NLP approaches has transitioned through several eras,
from simple rule-based models in the 1950s to sophisticated deep learning-
based models in the present day. The advent of Large Language Models
(LLMs) like GPT has revolutionized the field, enabling a more generalized
understanding of language through self-supervised learning. Despite their
prowess, LLMs face challenges such as temporal generalization and factual
grounding, which are critical when dealing with dynamic and specific database
queries.

This work leverages the Retrieval-Augmented Generation (RAG) tech-
nique to improve Text-to-SQL accuracy by integrating external data sources
and fine-tuning strategies. The study employs a combination of synthetic
dataset generation and prompt strategies to enhance the model’s performance.
Specifically, it utilizes the Mondial dataset, known for its complexity and rich-
ness in geographic data, to benchmark and evaluate the proposed techniques.

Through this project, the goal is to develop a robust Text-to-SQL frame-
work that can handle diverse and complex queries, providing a significant step
forward in making database interactions more intuitive and accessible. This
report documents the methodologies, experiments, and findings, contributing
valuable insights to the ongoing research in NLP and database management
systems.

This document is structured as follows. In Chapter 2 we present some
previous work relevant to our problem. In Chapter 3 we explain our proposal. In
Chapter 4 we show our results. Finally, in Chapter 5 we present our conclusion
and future work.



2 Background

2.1 The Emergence of Large Language Models

The approaches involved in Natural Language Processing (NLP) tasks
have undergone deep changes over the past decades. (MANNING, 2022)
classifies NLP approaches in roughly four eras. The first era, from 1950 to
1969, was characterized by simple rule-based models, achieving very limited
results due to the lack of computation, data, and knowledge of human language
structure. The second era, from 1970 to 1992, benefited from the rapid
development of linguistic theories, allowing the creation of a new generation
of hand-built systems from knowledge-based artificial intelligence models. The
third era, from 1993 to 2012, saw a shift from knowledge-based to machine-
learning models, when digital text became widely available, providing enough
data to allow some level of language understanding by using mainly supervised
machine-learning methods. The last era, from 2013 to the present, extended the
use of machine learning, allowing a more generalized language understanding
by using self-supervised learning and deep learning-based models to represent
words with dense vectors. Within this context, the first LLM was successfully
trained in 2018, by exposing a model to an extremely large quantity of text,
allowing the representation of an enormous amount of language knowledge.

LLMs follow the transformer neural network architecture (VASWANI
et al., 2017; TUNSTALL; WERRA; WOLF, 2022; JURAFSKY; MARTIN,
2023). The main intuition behind transformers is the use of the attention
mechanism, where the representation of a given position is computed based
on a weighted combination from others. Based on this architecture, the self-
supervised strategy for LLMs usually involves masking words in the text, and
training the model to predict the missing words from the outer context. After
this process is extensively repeated, the model learns generalized syntactic
structures of sentences.

As a consequence of their generalization capacity, LLMs perform well in
a wide variety of tasks, to the point of shifting the focus of NLP research away
from the previous paradigm of training specialized supervised models for the
specific tasks. In fact, an LLM can be redeployed to a particular NLP task
with a small number of further instructions.

However, an LLM reflects the data it was trained with. In particular, an
LLM suffers from the “temporal generalization problem” – capturing facts that
change over time – and the “factual grounding problem” – capturing specific
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facts. To circumvent these limitations, the user may fine-tune the LLM, that
is, retrain it with more examples, or he may adopt few-shot learning, that is,
add a few examples in a dialog interaction so that the model can capture what
the user is trying to do and generate a plausible completion. As mentioned
in the introduction,in the context of databases, these challenges translate to:
how to fine-tune an LLM to a specific database; and how to generate dialog
context, defined with data stored in a database, for an LLM.

2.2 Generative AI Language Models

The term Generative AI Language Models – GLM is also used in this
work, to call attention to the fact that, recently, several language models have
been made available that are, by comparison, smaller than LLMs published in
the past and yet achieve excellent performance.

Different sets of attributes may characterize a GLM. The Open LLM
Leaderboard1 uses: model type – pretrained, continuously trained, fine-tuned
on domain-specific datasets, chat models, etc.; precision – float16, bfloat16,
8bit, etc.; and model size in billions of parameters. Since models may not
activate all parameters for a given request, the model size has to be qualified;
for example, DBRX uses a fine-grained mixture-of-experts (MoE) architecture
with a total of 132B parameters, of which 36B parameters are active on a given
request (DATABRICKS, 2024).

The Independent Analysis of AI-Language Models and API Providers
Web site2 considers: context length, model quality, price, throughput, and la-
tency. Context length refers to the number of tokens accepted as input/out-
put, and limits the database metadata and data that can be passed to the
GLM in the text-to-SQL task. Among the quality features, the Web site lists
the coding ability of the model (see Table 2.1), which may be indicative of the
text-to-SQL ability.

Table 2.1: Coding – HumanEval.

Model Score
GPT-4-turbo 85.4
LLaMA-3-70B-instruct 81.7
GPT-3.5-turbo 73.2
Gemini 1.5 Pro 71.9
DBRX 70.1
Gemini 1.0 Pro 63.4
LLaMA-3-8B-instruct 62.2

Source: Independent analysis of AI language models and API providers.

1https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
2https://artificialanalysis.ai
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One may also list: licensing mode, where proprietary models run only on
vendors’ platforms, versus open-source models that can be downloaded and run
on a private platform, and the release date of the model, where more recent
models are expected to have better performance.

Using just the model size, a classification of GLMs would be:

– Small Language Model (SLM): the model typically has 10B parameters
or less; an open-source small model can be downloaded and executed on
a small server, or even a personal computer running a language model
platform, such as LM Studio3.

– Medium Language Model (MLM): the model typically has more than
10B parameters and at most 100B parameters; an open-source medium
model can be downloaded and executed on a mid-range server, typically
equipped with one or more GPUs; the server can be locally available or
allocated as a cloud resource.

– Large Language Model (LLM): the model typically has more than 100B
parameters; a large model is typically proprietary and runs on a large-
scale cloud-based infrastructure.

The licensing mode, model size, and context length stand out as relevant
characteristics for the construction of natural language database interfaces
based on text-to-SQL (see Table 2.2 for examples of recent GLMs).

Table 2.2: Examples of recent GLMs.

Owner Model License Size Context Length Release Date

Meta LLaMA-3-8B-instruct Open 8B 8.18K Apr 18, 2024LLaMA-3-70B-instruct Open 70B 8.18K

MS
Phi-3-mini Open 3.8B 4K and 128K

Apr 23, 2024Phi-3-small Open 7B 4K and 128K
Phi-3-medium Open 14B 8K

DataBricks DBRX Open 132B 32K Mar 27, 2024

Google
Gemma 7B Open 7B 8.19K Feb 21, 2024
Gemma 2 Open 27B – May 14, 2024
Gemini 1.5 Pro Proprietary N/A 1.0M Mar 08, 2024

Anthropic
Claude 3 Haiku Proprietary N/A 200K

Mar 04, 2024Claude 3 Sonnet Proprietary N/A 200K
Claude 3 Opus Proprietary N/A 200K

OpenAI
GPT-4o Proprietary N/A 128K May 13, 2024
GPT-4-turbo Proprietary N/A 128K Apr 09, 2024
GPT-3.5-turbo-0125 Proprietary N/A 16K Jan 25, 2024

3https://lmstudio.ai
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2.3 Text-to-SQL Datasets

The Spider – Yale Semantic Parsing and Text-to-SQL Challenge (YU et
al., 2018) offers datasets for training and testing text-to-SQL tools. Spider
features nearly 200 databases covering 138 different domains from three
resources: 70 complex databases from different college database courses, SQL
tutorial Web sites, online CSV files, and textbook examples; 40 databases
from DatabaseAnswers4; and 90 databases based on WikiSQL, with about 500
tables in about 90 different domains. For each database, Spider lists 20-50
hand-written NL questions and their SQL translations; the SQL queries cover
all the major SQL components.

Spider proposes three evaluation metrics: component matching checks
whether the components in the prediction and the ground truth match exactly;
exact matching measures whether the predicted query as a whole is equivalent
to the gold query; execution accuracy requires that the predicted SQL query
select a list of gold values and fill them into the right slots.

One may criticize Spider for having many databases with very small
schemas. The largest 5, in number of tables, are: baseball_1, with 25 tables,
cre_Drama_ Workshop_Groups, with 18 tables, and cre_Theme_park, imdb,
and sakila_1, with 16 tables. In fact, about half of the databases have schemas
with five tables or less. Therefore, the results reported in the leaderboard are
highly biased towards databases with small schemas and do not reflect real-
world databases.

Spider has two interesting variations. Spider-Syn (GAN et al., 2021)
is used to test how well text-to-SQL tools handle synonym, and Spider-DK
(GAN; CHEN; PURVER, 2021) addresses testing how well text-to-SQL tools
deal with domain knowledge.

BIRD – BIg Bench for LaRge-scale Database Grounded Text-to-SQL
Evaluation (LI et al., 2023) is a large-scale cross-domain text-to-SQL bench-
mark in English. The dataset contains 12,751 text-to-SQL data pairs and 95
databases with a total size of 33.4 GB across 37 domains. BIRD addresses
real-world applications by exploring three additional challenges: dealing with
large and messy database values, external knowledge inference, and optimizing
SQL execution efficiency. However, BIRD still does not have many databases
with large schemas: of the 73 databases in the training dataset, only two have
more than 25 tables, and, of the 11 databases used for development, the largest
one has only 13 tables. Again, all NL questions are phrased based on terms
used in the database schemas.

4http://www.databaseanswers.org/
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WikiSQL (ZHONG; XIONG; SOCHER, 2017) has 80,654 NL sentences
and SQL annotations of 24,241 tables. Each query in WikiSQL is limited to
the same table and does not contain complex operations such as sorting and
grouping.

SQL-Eval (PING, 2023) is a framework5 that evaluates the correctness of
text-to-SQL strategies, created during the development of Defog’s SQLCoder.

Finally, the sql-create-context6 dataset was built for the text-to-
SQL task. It contains 78,577 examples of NL queries, SQL CREATE TABLE
statements, and SQL Queries answering the questions. The CREATE TABLE
statement provides context for the LLMs, without having to provide actual
rows of data.

Despite the availability of these benchmarks for text-to-SQL, and inspired
by them, Section 4.1.1 describes a benchmark tuned to the problem addressed
in this study. The benchmark consists of a relational database, whose design is
based on a real-world database, three sets of LLM-friendly views, specified as
proposed in (NASCIMENTO et al., 2024b), and a set of 100 test NL questions,
that mimic those posed by real users, and their ground truth SQL translations.

2.4 Text-to-SQL Prompt Strategies

The Spider Web site7 publishes a leaderboard with the best-performing
text-to-SQL tools. The top 5 tools listed in the published leaderboard are
based on Prompt strategies and achieve an accuracy that range from an
impressive 85.3% to 91.2% (two of the tools are not openly documented). Four
tools use GPT-4, as their names imply. The three tools that provide detailed
documentation have an elaborate first prompt that tries to select the tables
and columns that best matches the NL question.

Were (in descending order): “MiniSeek” (no reference available at the
time of writing); “DAIL-SQL + GPT-4 + Self-Consistency” and “DAIL-SQL
+ GPT-4”, both reported in (GAO et al., 2023); “DPG-SQL + GPT-4 +
Self-Correction” (no reference available at the time of writing); “DIN-SQL +
GPT-4” (POURREZA; RAFIEI, 2023); “Hindsight Chain of Thought with
GPT-4” (no reference available at the time of writing); and “C3 + ChatGPT
+ Zero-Shot” (DONG et al., 2023).

The BIRD Web site8 also publishes a leaderboard with the best-
performing tools. At the time of writing, the topmost two tools use GPT-4.

5Available at https://github.com/defog-ai/sql-eval
6https://huggingface.co/datasets/b-mc2/sql-create-context
7https://yale-lily.github.io/spider
8https://bird-bench.github.io
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At the time of writing, in terms of Execution with Values, the five tools
listed on the Spider Leaderboard are (in descending order): “MiniSeek” (no
reference available at the time of writing), “DAIL-SQL + GPT-4 + Self-
Consistency” and “DAIL-SQL + GPT-4”, both reported in (GAO et al., 2023),
“DPG-SQL + GPT-4 + Self-Correction” (no reference available at the time
of writing), “DIN-SQL + GPT-4” (POURREZA; RAFIEI, 2023); for later
reference, the seventh is “C3 + ChatGPT + Zero-Shot” (DONG et al., 2023).
The 5 top tools in the BIRD Leaderboard, in terms of Execution Accuracy, in
turn, are “SFT CodeS-15B” and “SFT CodeS-7B” (no reference available for
both tools), “DAIL-SQL + GPT-4”, “DIN-SQL + GPT-4”, and GPT-4.

The Awesome Text2SQL Web site9 lists the best-performing text-to-SQL
tools on WikiSQL, Spider (Exact Match and Exact Execution) and BIRD
(Valid Efficiency Score and Execution Accuracy). The “60 Top AI Text To
SQL Bot Tools” Web site10 lists other AI tools for text-to-SQL.

MAC-SQL (WANG et al., 2024) is a recent addition and features an
LLM-based multi-agent collaborative framework, with a core decomposer agent
for text-to-SQL generation with few-shot chain-of-thought reasoning and two
auxiliary agents that use external tools to acquire smaller sub-databases and
refine erroneous SQL queries.

Finally, LangChain11 is a framework that helps develop LLM appli-
cations. LangChain is compatible with MySQL, PostgreSQL, Oracle SQL,
Databricks, SQLite, and other DBMSs. Very briefly, LangChain SQL-
QueryChain extracts metadata from the database automatically, creates a
prompt, and passes this metadata to the LLM. In particular, SQLQueryChain
passes a view specification as if it were a table specification. This chain greatly
simplifies creating prompts to access databases. In addition to passing the
schema in the prompt, this chain makes it possible to provide sample data
that can help an LLM build correct queries when the data format is not ap-
parent. Sample rows are added to the prompt after the column information for
each corresponding table

9https://github.com/eosphoros-ai/Awesome-Text2SQL
10https://topai.tools/s/Text-to-SQL-bot
11<https://docs.langchain.com>

https://docs.langchain.com
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2.5 Fine-tuning LLMs for text-to-SQL

Attempts to fine-tune open-source LLMs for the text-to-SQL task using
NL question/SQL query pairs were reported in (GAO et al., 2023). However,
until recently, the fine-tuned models did not achieve a performance on Spider
comparable to the zero-shot (i.e., with no examples) performance of GPT-3.5-
turbo.

The Defog SQLCoder12 is based on models fine-tuned for the text-to-SQL
task. The latest version, sqlcoder-70b-alpha, features 70B parameters and was
fine-tuned on a base StarCoder model on more than 20,000 human-curated
questions, classified as in Spider, based on ten different schemas. The training
dataset13 consisted of prompt-completion pairs, encompassing several schemas
with varying difficulty levels, whereas the evaluation dataset featured questions
from novel schemas. The use of complex schemas, with 4-20 tables, challenged
the model. The fine-tuning process occurred in two stages: the base model
was first refined using easy and medium questions and then further fine-tuned
on hard and extra-hard questions to yield the final model. The accuracy of
the sqlcoder-70b-alpha model on the Defog’s dataset achieved 93.0%, whereas
GPT-4 (Feb. 5, 2024) achieved 86%. Still, the experiments were based on
databases with very small schemas.

DTS-SQL (POURREZA; RAFIEI, 2024) is a two-stage fine-tuning pro-
cess that separates schema linking and SQL generation. The authors first ap-
plied DTS-SQL to fine-tune Mistral-7B (JIANG et al., 2023) and DeepSeek-
7B (DEEPSEEK-AI et al., 2024) for text-to-SQL. Then, they evaluated the
fine-tuned models on Spider and Spider-Syn and showed that the execution
accuracy was improved by 3% to 7%. The fine-tuned DeepSeek-7B achieved a
performance comparable to the best strategies listed in the Spider leaderboard.
Although promising, these results reflect the limitations of Spider, namely, that
the databases have simple schemas.

Natural-SQL-7B by ChatDB14 was fine-tuned for text-to-SQL from
deepseek-coder-6.7b-instruct, using 8,000 pairs of NL questions / SQL queries
(for PostgreSQL). It is part of the NaturalSQL by ChatDB15 collection of
models.

Using a proprietary, real-world database with a large schema, early
experiments showed that Mistral-7B frequently hallucinated, and Code Llama
2-13B-instruct-text2-sql16 had poor performance, even using RAG (see Section

12https://github.com/defog-ai/sqlcoder?tab=readme-ov-file
13https://defog.ai/blog/open-sourcing-sqlcoder/
14https://huggingface.co/chatdb/natural-sql-7b-GGUF
15https://github.com/cfahlgren1/natural-sql
16https://huggingface.co/support-pvelocity/Code-Llama-2-13B-instruct-text2sql-GGUF
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2.6). This may reflect the fact that Code Llama 2-13B-instruct-text2-sql was
trained on Spider and WikiSQL, again on databases with small schemas.

Finally, these last experiments, including the DTS-SQL fine-tuning,
required only modest hardware, and showed that it is feasible to run SLMs
on small local servers and yet achieve state-of-the-art performance on Spider.

2.6 Retrieval-Augmented Generation (RAG) for Text-to-SQL

Retrieval-Augmented Generation (RAG), introduced in (LEWIS et al.,
2020), is a strategy to incorporate data from external sources. This process
ensures that the responses are grounded in retrieved evidence, thereby signifi-
cantly enhancing the accuracy and relevance of the output.

There is an extensive literature on RAG. A recent survey (GAO et al.,
2024) classified RAG strategies into naive, advanced, and modular RAG. Ad-
vanced RAG introduces various methods to optimize retrieval. Modular RAG
integrates strategies to enhance functional modules, such as incorporating a
search module for similarity retrieval and applying a fine-tuning approach in
the retriever.

In the context of text-to-SQL, recent RAG references include a technique
for an LLM-based Text-to-SQL framework involving sample-aware prompting
and a dynamic revision chain (GUO et al., 2023). A RAG technique is used
in (PANDA; GOZLUKLU, 28 Feb 2024) to retrieve the table and column
descriptions from a metadata store to ensure that the NL question is related
to the right tables and columns.

In summary, the background section has provided a comprehensive
overview of the evolution of Natural Language Processing techniques, partic-
ularly focusing on the challenges and advancements in Text-to-SQL systems.
The exploration of Generative AI Language Models (GLMs), various datasets,
and current Text-to-SQL tools has set the stage for understanding the com-
plexities involved in translating natural language queries into SQL. Moreover,
the detailed discussion on the Retrieval-Augmented Generation (RAG) tech-
nique has highlighted its potential to enhance the accuracy and relevance of
Text-to-SQL outputs. With this foundation, we can now transition to our pro-
posed methodology. The following chapter will present a detailed proposal of
a RAG-based Text-to-SQL framework, including the generation of synthetic
datasets and the incorporation of schema information, to address the challenges
identified in the background research.



3 Proposal

3.1 Outline of a Prototype Text-to-SQL framework

This section outlines a prototype text-to-SQL framework based on SQL-
QueryChain, combined with a Retrieval-Augmented Generation (RAG) tech-
nique, leaving as flexibilization points: the GLM and the database DB. Figure
3.1 depicts the framework, with the flexibilization points indicated in light
grey.

Figure 3.1: The architecture of a prototype text-to-SQL framework.

The simplest way to create a GLM-based text-to-SQL tool would be to
design Prompts that implement three steps:

S1. (Schema Linking) Given an NL question Q, retrieve a description of the
relation tables and columns, creating a context C.

S2. (SQL Translation) Ask to translate Q into an SQL query S under the
context C.

S3. (SQL Execution) Execute S.

The text-to-SQL framework has roughly the following steps:

Pre-processing

P1. (Sample Generation) Generate pairs (Qi, Si) from the database DB,
where Qi is an NL question and Si is the corresponding SQL query.

P2. (Embedding) Embed each NL question Qi into a vector Vi and store Vi

along with the pair (Qi, Si) in a synthetic dataset SD.

Processing

S1. (Sample Retrieval) Given an NL question Q0, embed Q0 in a vector VQ0 ;
retrieve from DS the top-k vectors Vi, i ∈ [1, k], most similar to VQ0 ;
create a context C with the pairs (Qi, Si), i ∈ [1, k].
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S2. (Schema Linking) Ask the GLM to retrieve from DB a description
of the relation tables and columns, passing the context C; add these
descriptions to C.

S3. (SQL Translation) Ask the GLM to translate Q0 into an SQL query S0

under the context C.

S4. (SQL Execution) Execute S0.

SQLQueryChain1, adopted in this study, is the simplest LangChain text-
to-SQL chain and is adapted in the framework to care for Steps S2 and S3. It
trivializes the Schema Linking step by adding to the context C a description
of all tables in the database schema. SQLQueryChain proved effective for real-
world databases (COELHO et al., 2024; NASCIMENTO et al., 2024a), vis-a-
vis much more complex text-to-SQL strategies listed at the top of the Spider
and BIRD leaderboards.

The RAG technique adopted injects knowledge of the database schema
and the data semantics into a GLM, and led to a considerable improvement of
the accuracy of text-to-SQL Prompt strategies (COELHO et al., 2024).

Steps P1 and P2 must be run only once for each database to generate
the synthetic dataset SD in such a way as to improve the performance of
the Schema Linking and SQL Translation steps. The technique introduced
in (COELHO et al., 2024) provides a robust strategy to construct database-
specific synthetic datasets, especially when it comes to conveying the data
semantics of the database to the GLM. The generation of SD is based on
an algorithm that samples the database DB, its schema, and associated
documentation, and calls a GLM to create an NL question Qi from the sampled
data and to translate Qi into an SQL query Si. Roughly, by varying how the
sampling works, the pairs in SD provide SQL examples illustrating how the
database schema is structured, how the user’s language maps to the database
schema, and how NL language constructions map to data values. Therefore, the
synthetic dataset SD is specific to the database, but the algorithm is generic
and applicable to any database. Table 4.3, discussed in Section 4.1.2, shows a
sample of the synthetic dataset for Mondial.

This basic RAG technique has a limitation, though, since the Retrieval
Step often retrieves pairs (Qi, Si) whose SQL queries are similar. The net
effect is that the examples passed in the context C have little diversity. The
RAG technique with question decomposition tries to remedy this limitation by
decomposing the NL question Q0 into subquestions Q1, ..., Qn, which are then
used in the Sample Retrieval step.

1https://python.langchain.com/docs/use_cases/sql/prompting
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This study then introduces a revised version of the Sample Retrieval step:

S0. (Question Decomposition) Given an NL question Q0, decompose Q0 into
subquestions Q1, ..., Qn.

S1. (Sample Retrieval) Embed Q0, Q1, ..., Qn into vectors VQ0 , VQ1 , VQn ; re-
trieve from DS the top-k vectors Vj,i, j ∈ [0, n], i ∈ [1, k], most similar
to VQj

; create a context C with the pairs (Qj,i, Sj,i), j ∈ [0, n], i ∈ [1, k].

3.2 The Proposed RAG-Based Technique

The RAG-based techniques assume that the NL questions in the syn-
thetic dataset have already been embedded into a vector space and indexed
accordingly. The critical step, question similarity selection, first obtains an
embedding EI of the input NL question. Then, it retrieves from the synthetic
dataset the top-k pairs whose NL question embeddings are similar to EI , as
usual.

The experiments will consider four configurations, which test two syn-
thetic datasets combined or not with schema information.

The single-attribute synthetic dataset is generated by sampling just sin-
gle attributes (that is, by calling Algorithm 1 always with n = 1), whereas
the multi-attribute synthetic dataset is generated by sampling multiple at-
tributes. Therefore, the single-attribute syntactic dataset will contain only
pairs (QN , QS), where QN is a simple NL question and QS is a SQL query
over a single table, with no join clauses, and a WHERE clause with one filter
over a single column.

Now, RAG with no schema information uses RAG to retrieve examples
from the synthetic dataset which are similar to the input NL question, and
prompts the LLM only with the retrieved examples. These experiments test
whether the synthetic dataset is sufficient to convey all the information about
the database the LLM requires for the text-to-SQL task.

By contrast, RAG with schema information uses RAG to retrieve ex-
amples from the synthetic dataset and prompts the LLM with the retrieved
examples and the database schema. These experiments test whether the RAG-
based technique adds information not conveyed by the schema, thereby leading
to a better text-to-SQL prompt strategy.
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3.3 Generation of the Synthetic Dataset

A synthetic dataset may provide SQL examples illustrating how the
database schema is structured, how the user’s language maps to the database
schema, and how NL language constructions map to data values. This section
outlines a procedure to generate a synthetic dataset with examples of all
these three types, by exploring the database, its schema, and associated
documentation.

Algorithm 1 shows a much simplified pseudo-code of the core procedure,
which generates a pair (QN , QS), where QN is a NL question and QS is the
corresponding SQL query. Very briefly, the core procedure goes as follows:

Algorithm 1: Generate Synthetic Dataset
Input: the number n of columns to select, the database DR, the

database schema DS, and the database documentation Ddoc, if
available.

Output: a pair (QN , QS) where QN is an NL question and QS is the
corresponding SQL query.

1 Function GenerateExample(n, DR, DS, Ddoc):
2 QA ← SelectColumns(n, DS);
3 QK ← CreateNLQuestion(QA, DR, DS, Ddoc);
4 QS ← CompileSQLQuery(QK , DS);
5 QN ← ImproveNLQuestion(QK , DR, DS, Ddoc);
6 return (QN , QS);

– Step 1 (on Line 2) selects a set QA of n pairs of table/column names from
the database tables. The selection process employs a weighted random
distribution, which reflects the likelihood of each column of a table being
chosen by an average user.

– Step 2 (on Line 3) creates an NL question QK from QA by prompting
GPT-3.5-turbo with the following information: the column/table pairs
selected in Step 1, sample values of each column/table, and a simplified
Data Definition Language (DDL) statement encompassing only the
columns and tables involved, including any join tables. In addition, the
type of restriction to be incorporated into the NL question depends on
the nature of the data. For instance, for numerical columns, restrictions
may involve operations such as summation, averaging, or finding the
maximum value. Similarly, requests might include grouped aggregations
for categorical columns, among other possibilities. Lastly, the prompt
includes instructions on how to formulate the NL question by using the
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database vocabulary without altering the column and table names. This
is essential for the next step.

– Step 3 (on Line 4) calls GPT-4 to translate QK into an SQL query that
responds to the NL question by providing the simplified DDL statement
in the same manner as in Step 2. It is worth noting that, since QK is
written using the database vocabulary and since the DDL statement
describes only the necessary tables and columns, this translation task is
relatively simple.

– Finally, Step 4 (on Line 5) calls GPT-3.5-turbo to translate QK into
an improved NL question QN , using the database documentation Ddoc,
which includes the Description of each column and table along with
synonyms. During this step, GPT-3.5-turbo is instructed to rephrase the
NL question by translating from the database to the user’s vocabulary,
preserving the original NL question intent.

By looping Algorithm 1 over different combinations of table/column
name samples, one can generate a reasonably large dataset, containing thou-
sands of instances of NL questions and their corresponding SQL queries.

When n = 1, Algorithm 1 samples just one column/table pair from the
database schema. This option is interesting for capturing data value semantics,
as the following example illustrates (see Chapter 4 for a description of the
Mondial dataset)

– Suppose Step 1 selects column Area of table MONDIAL_LAKE.
– Since Area is a categorical column, suppose Step 2 decides to create the

filter Area > 500, based on the samples provided in the prompt. The NL
question will then be QK = “List all instances on the Lake table which
have Area greater than 500”.

– Step 3 creates the SQL query QS

Code 1: SQL query QS

1 SELECT * FROM MONDIAL_LAKE WHERE AREA > 500;

– Step 4 observes in the database documentation that users adopt Big
Lakes to refer to plans such that Area = 500. Therefore, Step 4 generates
the improved NL question QN = “List all big lakes”.

When n > 1, Algorithm 1 samples two or more column/table pairs from
the database schema, which forces Step 3 to generate SQL queries with one
or more joins, if the sampled column/table pairs are from different tables. For
example, consider a sample with two column/table pairs (that is, n = 2):
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– Suppose Step 1 selects column ESTABLISHED of table
Mondial_Organization and column ELEVATION of table Mondial_City.

– Based again on the samples provided and the nature of the columns,
suppose that Step 2 generates the following question: QK = “What types
ESTABLISHED instances from the table Mondial_Organization that are
equal to XPTO associated with ELEVATION equals XPTO from table
Mondial_City.

– Step 3 creates the SQL query QS

1 SELECT MO. ESTABLISHED
2 FROM MONDIAL_ORGANIZATION MO
3 JOIN MONDIAL_CITY MC
4 ON MO.CITY = MC.NAME
5 WHERE MC. ELEVATION = '%xpto ';

– Step 4 then improves the readability of QK , generating the NL question
QN = “What is the established for organizations in the organization table
where the corresponding cities in the city table have a elevation equals
xpto?”.

Finally, we observe that the implementation of the core procedure is
capable of generating far more complex NL question/SQL query pairs. Without
going into the details, the following example illustrates this remark:

– Initial NL question:“What is the time period when organizations were
established in cities with known elevation values?”

– Reformulated NL question: “time period organizations established cities
known elevation values”

– SQL query for both NL questions:

1 SELECT MIN(MO. ESTABLISHED ),
2 MAX(MO. ESTABLISHED )
3 FROM MONDIAL_ORGANIZATION MO
4 JOIN MONDIAL_CITY MC
5 ON MO.CITY = MC.NAME
6 WHERE MC. ELEVATION IS NOT NULL;



4 Results

The experiments tested the strategies summarized in Table 4.6 over
the Mondial benchmark. The experiments tested the accuracy, defined as the
number of correct predicted SQL queries divided by the total number of SQL
queries, as usual. The experiments used an automated procedure to compare
the predicted and the gold-standard SQL queries, entirely based on column
and table values, and not just column and table names. The results of the
automated procedure were manually checked to eliminate false positives and
false negatives

4.1 The Mondial Benchmark

4.1.1 The Mondial Dataset and the Set of NL Questions

A benchmark dataset for the text-to-SQL task is a pair B =
(D, {(Li, Gi)/i = 1, ..., n}), where D is a database and, for i = 1, ..., n, Li

is an NL question over D and Gi is the ground truth SQL query over D that
translates Li. In the context of this study, a benchmark dataset is meant exclu-
sively for testing text-to-SQL tools; it is not designed for training such tools.
Section 4.3 describes the procedure adopted to evaluate text-to-SQL tools.

The primary benchmark dataset adopted in this study is Mondial, with
a set of 100 NL questions and their translations to SQL.

The questions are classified into simple, medium, and complex, that
correspond to the easy, medium, and hard classes used in the Spider benchmark
(extra-hard questions were not considered). As in the Spider benchmark,
the difficulty is based on the number of SQL constructs, so that queries
that contain more SQL constructs (GROUP BY, ORDER BY, INTERSECT,
nested subqueries, column selections, and aggregators) are considered to be
harder. The list of questions contains 33 simple, 34 medium, and 33 complex
questions1.

Mondial stores geographic data and is openly available. It has a total
of 47.699 instances; the relational schema2 has 46 tables, with a total of 184
columns, and 49 foreign keys, some of which are multi-column.

The Mondial dataset provides a rich and diverse set of geographic data,
encompassing information such as countries, cities, and rivers. This extensive

1The details are available at <https://github.com/dudursn/text_to_sql_chatgpt_
real_world>

2The Mondial referential dependencies diagram can be found at <https://www.dbis.
informatik.uni-goettingen.de/Mondial/mondial-abh.pdf>

https://github.com/dudursn/text_to_sql_chatgpt_real_world
https://github.com/dudursn/text_to_sql_chatgpt_real_world
https://www.dbis.informatik.uni-goettingen.de/Mondial/mondial-abh.pdf
https://www.dbis.informatik.uni-goettingen.de/Mondial/mondial-abh.pdf
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dataset is valuable for evaluating the performance of natural language to SQL
translation systems due to its complexity and the variety of relationships it
embodies. The dataset’s schema, which includes 46 tables, ensures a broad
spectrum of query types, making it an excellent choice for benchmarking
purposes. The inclusion of multiple foreign keys, some of which span multiple
columns, adds another layer of complexity, challenging systems to accurately
interpret and navigate these relationships.

In addition to the structural richness of the Mondial dataset, the clas-
sification of questions into simple, medium, and complex categories provides
a granular evaluation framework. Simple questions typically involve straight-
forward selections from single tables, while medium questions might include
basic joins or filters. Complex questions, on the other hand, often require nested
queries, aggregations, or advanced SQL constructs like GROUP BY and OR-
DER BY. This classification allows for a nuanced assessment of a system’s ca-
pabilities, helping to pinpoint strengths and areas needing improvement across
different levels of query complexity.

Table 4.1 shows basic statistics of the sets of queries, where “#cols” refers
to the number of columns of the target clause and the other columns refer to
the number of joins, filters, and aggregations that occur anywhere in the query,
including any nested query.

Table 4.1: Datasets Statistics.

Finally, Table 4.2 shows some samples of NL questions and their gold-
standard SQL translations
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Table 4.2: Sample benchmark NL questions and their SQL translations

Type NL Question Gold-standard SQL Query ID
simple Show the Airports with elevation SELECT NAME FROM MONDIAL_AIRPORT 33

more than 3000. WHERE ELEVATION > 3000.0
medium What type of government does Iran have? SELECT p.GOVERNMENT 99

FROM MONDIAL_COUNTRY c
INNER JOIN MONDIAL_POLITICS p
ON p.COUNTRY = c.CODE
WHERE c.NAME = "Iran"

complex What are the area, elevation, SELECT l.AREA, l.ELEVATION, l.TYPE 59
and type of lakes in Italy? FROM MONDIAL_GEO_LAKE gl,

MONDIAL_LAKE l,
MONDIAL_COUNTRY c

WHERE (gl.LAKE = l.NAME)
AND (gl.COUNTRY = c.CODE)
AND c.NAME = "Italy"

4.1.2 The Mondial Synthetic Dataset

The Mondial benchmark also includes a synthetic dataset with 60,000
pairs, obtained by sampling table columns and associated data, using the
technique outlined in Chapter 3.

As an example, Table 4.3 shows a sample of the synthetic dataset for
Mondial. Lines 1 to 3 correspond to the sampled pair (“LAKE.AREA”,500), that
is, to the AREA column of table MONDIAL_LAKE, sampled from the database
schema, and the value 500, sampled from the set of the AREA column values.
The technique generated three different NL questions, which are paraphrases
of each other, and mapped them to the same SQL query (repeated in the last
column).

Lines 4 to 6 show more elaborate examples that correspond to sampling
two columns: ESTABLISHED of MONDIAL_ORGANIZATION and ELEVATION of
MONDIAL_CITY. Sampling two columns leads to a join between the two tables,
reflected in the NL question paraphrases in Lines 4 to 6.

Table 4.4 presents an example of an NL question, the corresponding
gold-standard SQL query, and the SQL queries generated with and without
question decomposition. The example illustrates that the GLM tries to re-
late the country name “thailand” directly with the COUNTRY column of the
MONDIAL_RELIGION table. However, the values of the COUNTRY column con-
sist of the Country code, requiring a join with the MONDIAL_COUNTRY table
to obtain the Country name. This behavior reflects the fact that the samples
retrieved do not include examples of such joins, as shown in Line 1 of Table
4.5. However, by running the Question Decomposition step first, the Sample
Retrieval step will fetch the examples in Lines 2 and 3 of Table 4.5. Note that
Line 2 indeed contains an example of a join between the two tables, needed to
answer the original NL question.

Table 4.5 illustrates how the Question Decomposition step works. The
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Table 4.3: A sample of the synthetic dataset for Mondial.

# NL question SQL query

1
What are the lakes
in the MONDIAL_LAKE table
with an area greater than 500?

SELECT NAME, AREA FROM MONDIAL_LAKE
WHERE AREA >500

2 Which lakes have an area larger than 500? SELECT NAME, AREA FROM MONDIAL_LAKE
WHERE AREA >500

3 lakes area larger than 500 SELECT NAME, AREA FROM MONDIAL_LAKE
WHERE AREA >500

4

What is the time range of
ESTABLISHED for organizations
in the MONDIAL_ORGANIZATION table
where the corresponding cities
in the MONDIAL_CITY table
have a non-null ELEVATION value?

SELECT MIN(MO.ESTABLISHED),
MAX(MO.ESTABLISHED)
FROM MONDIAL_ORGANIZATION MO
JOIN MONDIAL_CITY MC
ON MO.CITY = MC.NAME
WHERE MC.ELEVATION IS NOT NULL

5
What is the time period
when organizations were established
in cities with known elevation values?

SELECT MIN(MO.ESTABLISHED),
MAX(MO.ESTABLISHED)
FROM MONDIAL_ORGANIZATION MO
JOIN MONDIAL_CITY MC
ON MO.CITY = MC.NAME
WHERE MC.ELEVATION IS NOT NULL

6 time period organizations established cities
known elevation values

SELECT MIN(MO.ESTABLISHED),
MAX(MO.ESTABLISHED)
FROM MONDIAL_ORGANIZATION MO
JOIN MONDIAL_CITY MC
ON MO.CITY = MC.NAME
WHERE MC.ELEVATION IS NOT NULL

original NL question (Line 1) requests the percentage of Hindu people. Thus,
to answer this question, the Question Decomposition step generated the NL
question on Line 2 to retrieve the total number of religious people, and the
NL question on Line 3 to retrieve the number of Hindu people. By combining
the results of these two subquestions, it would be possible to compute the
percentage of Hindu people, as requested in the original NL question.

Table 4.4: Comparison of SQL generated with and without decomposition

NL Question Gold-standard SQL Query Generated SQL Query
without Decomposition

Generated SQL Query
with Decomposition

What is the percentage of
religious people are hindu in
thailand?

SELECT r.percentage
FROM mondial_religion r
INNER JOIN mondial_country c
ON r.country = c.code
WHERE c.name = ‘Thailand’
AND r.name LIKE ‘%Hindu%’

SELECT PERCENTAGE
FROM MONDIAL_RELIGION
WHERE COUNTRY = ‘Thailand’
AND NAME = ‘Hindu’;

SELECT PERCENTAGE
FROM MONDIAL_RELIGION r
INNER JOIN MONDIAL_COUNTRY c
ON r.COUNTRY = c.CODE
WHERE LOWER(r.NAME) = ‘hindu’
AND LOWER(c.NAME) = ‘thailand’

4.2 Configuration of the Experiments

The experiments tested the strategies summarized in Table 4.6 for the
100 NL questions and their translations to SQL over the Mondial, stored in
Oracle. The foreign keys of Mondial were used.

Except for the SQLCoder, the experiments ran each strategy with two
LLMs – GPT-3.5-turbo or GPT3.5-turbo-16k and GPT-4. Since both schemas
are fairly large, some experiments had to use GPT3.5-turbo-16k, which allows
16k tokens. The experiments used the (paid) OpenAI API.k.
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Table 4.5: Generated decompositions with the RAG results.
Subquestion Sample Retrieved Pairs (Q, S)

What is the percentage of
religious people are Hindu in Thailand?

Q : What are the percentage values of the religions in the table MONDIAL_RELIGION?

S : SELECT NAME, PERCENTAGE FROM MONDIAL_RELIGION;

What is the total number of
religious people in Thailand?

Q : What is the total number of religious followers in all countries situated on the island
of Tortola, in terms of the percentage of the population that practices a religion?

S : SELECT SUM(MONDIAL_RELIGION.PERCENTAGE)
FROM MONDIAL_RELIGION
JOIN MONDIAL_COUNTRY
ON MONDIAL_RELIGION.COUNTRY = MONDIAL_COUNTRY.CODE
JOIN MONDIAL_AIRPORT
ON MONDIAL_COUNTRY.NAME = MONDIAL_AIRPORT.COUNTRY
JOIN MONDIAL_ISLAND
ON MONDIAL_AIRPORT.ISLAND = MONDIAL_ISLAND.NAME
WHERE LOWER(MONDIAL_ISLAND.NAME) = ‘tortola’

What is the number of Hindu people
in Thailand?

Q : What is the number of people living in each country in the database?

S : SELECT NAME, POPULATION FROM MONDIAL_COUNTRY

SQLCoder used the sqlcoder-34b-alpha model, with 34B parameters.
For the experiments, owing to constraints inherent in the model, the Mondial
DDL was transposed to the PostgreSQL syntax, facilitated by GPT-4 under
human supervision. Then, the output comprised SQL queries formulated in
PostgreSQL syntax, subsequently transcribed into the Oracle syntax through
GPT-4, again under human supervision.

The experiments that used the text-to-SQL framework, described in
Chapter 3, instantiated with the Mondial database, ran three versions of the
framework, identified as:

– SQLQueryChain: just Steps S2, S3, and S4 of the framework, that is,
the standard SQLQueryChain implemented in LangChain. This is the
baseline strategy.

– SQLQueryChain with RAG: Steps S1 to S4, using the synthetic dataset
with 60,000 pairs pre-computed for Mondial, defined in Section 4.1.1.
The usual cosine similarity function was adopted to compare the user’s
NL question and the NL questions in the dataset. These experiments
assess whether RAG improves accuracy for a given model.

– SQLQueryChain with RAG and Question Decomposition: Step S0, the
modified Step S1, and Steps S2, S3 and S4. These experiments assess
whether Question Decomposition further improves accuracy for a given
model, as proposed in this work.

In all three versions, the GLM remains the only open flexibilization point
of the framework since the experiments aimed to test different GLMs under
the same conditions.

The experiments then instantiated the framework with the following
models, running on different platforms:
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Table 4.6: Summary of the strategies tested.

1) “SQLCoder” –
Defog’s tool for text-to-SQL, using a special-purpose LLM.
2) “SQLQueryChain (LangChain)” –
The LangChain SQLQueryChain processes NL questions into SQL;
tested with GPT-3.5-turbo-16k and GPT-4.
3) “SQLDatabaseSequentialChain (LangChain)” –
The LangChain SQLDatabaseSequentialChain processes NL questions
into SQL;
tested with GPT-3.5-turbo-16k and GPT-4.
4) “SQL Database Agent (LangChain)” –
The LangChain SQL Database Agent processes NL questions into SQL;
tested with GPT-3.5-turbo-16k and GPT-4.
5) “DIN-SQL” –
An implementation of “DIN-SQL” that allows the use of different LLMs;
tested with GPT-3.5-turbo-16k and GPT-4.
6) “C3” –
An implementation of “C3” that allows the use of different LLMs;
tested with GPT-3.5-turbo and GPT-4.
7) “C3+DIN” –
The C3+DIN tool introduced in Section 2.4;
tested with GPT-3.5-turbo-16k and GPT-4.

– Proprietary Large Language Models: GPT-3.5-turbo-16K and GPT-4,
running on the OpenAI (paid) platform.

– Open-source Medium Language Models: LLaMA-3-70B-instruct and
DBRX, running on a server configured on the Azure platform.

– Open-source Small Language Models: Gemma 7B and Natural-SQL-7B
by ChatDB, running locally on LM Studio.

Natural-SQL-7B by ChatDB was selected because it was fine-tuned for
text-to-SQL and had good results. Gemma 7B was just released at the time
of writing. The other models were chosen because they performed well on a
coding task (see Table 2.1).

4.3 Evaluation Procedure

Let B = (D, {(Pi, Gi)/i = 1, ..., n}) be a benchmark dataset. Let Pi be
a predicted SQL query and Gi be the corresponding ground truth SQL query.
Let PTi and GTi be the tables that Pi and Gi return when executed over D,
called the predicted and the ground truth tables.
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Intuitively, Pi is correct if PTi and GTi are similar. The notion of similar-
ity adopted neither requires that PTi and GTi have exactly the same columns,
nor that they have exactly the same rows. This allows for some mismatch
between PTi and GTi. The following procedure captures this intuition:

1. Compute GTi and PTi over D.

2. For each column of GTi, compute the most similar column of PTi,
respecting a minimum column similarity threshold of tc. This step
induces a partial matching M from columns of GTi to columns of PTi.

3. If the fraction of the number of columns of GTi that match some column
of PTi is below a given threshold tn, Pi is considered incorrect.

4. The adjusted ground truth table AGTi is constructed by dropping all
columns of GTi that do not match any column of PTi, and the adjusted
predicted table APTi is constructed by dropping all columns of PTi that
are not matched and permuting the remaining columns so that PCk is
the kth column of APTi if GCk, the kth column of AGTi, is such that
M(GCk) = PCk.

5. Finally, AGTi and APTi are compared. If their similarity is above a given
threshold tq, then Pi is correct; otherwise Pi is incorrect.

In Step 1, GTi may be pre-computed to avoid re-executing Gi over D for
each experiment.

In Step 2, the similarity between two table columns was measured as
their Jaccard coeficient (recall that table columns are sets). The threshold tc

was set to 0.50.
In Step 3, the threshold tn was set to 0.80, that is, 0.80 of the number of

columns of GTi must match some column of PTi. Note that, setting tn = 0.80
forces all columns of GTi to match some column of PTi, if GTi has 4 or less
columns (indeed 4 ∗ 0.80 = 3.20 is rounded up to 4, that is, GTi must have all
4 columns matching some column of PTi, and likewise for a smaller number of
columns).

Now, recall from column “#cols” of Table 4.1 that all queries for Mondial
have a result with at most 4 columns. Hence, setting tn = 0.80 implies that
actually all columns of GTi must match a column of PTi.

In Step 4, the new tables AGTi and APTi will have the same number of
columns and the matched columns will appear in the same order.

In Step 5, the similarity of AGTi and APTi was computed as their Jaccard
coeficient (recall that tables are sets of tuples), and the threshold tq was set
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to 0.95. Thus, AGTi and APTi need not have exactly the same rows but,
intuitively, Pi will be incorrect if APTi contains only a small subset of the
rows in AGTi, or APTi contains many rows not in AGTi.

Finally, the accuracy of a given text-to-SQL strategy over the benchmark
B is the number of correct predicted SQL queries divided by the total number
of predicted queries, as usual.

4.4 Prompt Strategies Results

Table 4.8, show the results for the Mondial database. Columns under
“Accuracy” indicate the accuracy results for the simple, medium and com-
plex queries, as well as the overall accuracy; columns “Input Tokens” and
“Output Tokens” respectively show the number of tokens passed as input
and received as output from the model; column “Estim. Cost” indicates the
estimated cost in US Dollars; and column “Exec. Time” displays the total
time to compute the 100 queries, which naturally depends on the HW and SW
setup, and should be used only to compare the various strategies.

Table 4.7: Error analysis of the C3 with GPT-4 experiment using the Mondial
database.

Error Type Schema
Linking

Joins Nested
Query

Invalid
Query

Misc

Percentage 53.3 30.0 3.3 6.7 6.7

Accuracy. The top-5 strategies for overall accuracy used GPT-4. C3 had
the best overall accuracy of 0.78. Then, SQLQueryChain with samples, DIN,
and C3+DIN had the same overall accuracy of 0.70. Lastly, SQLQueryChain,
without samples, achieved 0.69. Among the Langchain-based strategies, those
that passed the entire schema and sample data in the prompt proved to have
a superior overall accuracy. SQLCoder had a limited overall accuracy of 0.35.
C3 with GPT-4 also had the best accuracy for complex queries, 0.71, whereas
C3+DIN with GPT-4 had the best accuracy for simple queries, 0.91.

Strategy details. Experiments with Langchain were divided into two groups:
passing the NL question and the schema; passing the NL question, the schema,
and two sample rows from each table. The second group resulted in large
prompts, requiring GPT-3.5-turbo-16k in some cases, while GPT-4 handled
large prompts seamlessly. SQLDatabaseSequentialChain and SQLAgent had
minimal cost due to the smaller prompts obtained by filtering schemas for
tables. However, ChatGPT misidentified crucial tables, leading to incorrect
SQL queries. SQLAgent became lost or hallucinated using GPT-4. In fact,
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SQLAgent is not fully compatible with GPT-4. Also, SQLAgent had a poor
performance with GPT-3.5-turbo.

DIN with GPT-3.5-turbo had the largest number of input tokens, fol-
lowed closely by DIN with GPT-4, both with over 1,4 MM input tokens.
Indeed, DIN generates large prompts since it passes the complete database
schema and uses a few examples to indicate how the LLM should reason and
generate SQL code in each stage, except for the self-correction stage.

C3’s Consistent Output generated many output tokens since it produces
ten answers in each clear-prompting stage (table recall and column recall).
Furthermore, the output token price of ChatGPT ($0.06/1K sampled tokens)
is higher than the input token price ($0.03/1K prompt tokens). Thus, albeit
C3 with GPT-4 had the best overall accuracy, it generated 426,937 output
tokens with an overall cost of $30.23.

Table 4.7 shows the error analysis of C3 with GPT-4. When compared
with that of C3 for the Spider benchmark (DONG et al., 2023), it indicates
that the errors resulting from schema linking and joins are exacerbated in the
experiments with Mondial, which would be expected, given that the Mondial
schema is far more complex than the majority of the datasets in the Spider
benchmark.

C3+Din with GPT-4 had the same overall accuracy as DIN, but lower
than C3 with GPT-4. However, its cost and execution times were the highest
among all experiments. It inherited the problems of C3 and DIN, such as a
high table and column recall time and large prompt sizes, but generated fewer
input tokens than DIN, as it did not use all DIN modules.

Table 4.8: Results for Mondial.
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4.5 RAG Framework Results

Recall that the Mondial benchmark has 100 NL questions, where 33
are simple, 33 are medium, and 34 are complex. Table 4.9 summarizes the
results for the selected models. Note that the lines are grouped according to
the alternative of the framework used. Also, note that the experiments ran the
SQLQueryChain with RAG and Question Decomposition alternative only for
each of the small, medium, and large models that had the best accuracy in the
SQLQueryChain with RAG alternative.

Results for the Large Language Models. Lines 1 and 7 show the results for the
framework instantiated with GPT-3.5-turbo-16K without RAG (Line 1) and
with RAG (Line 7). The configuration with RAG achieved a total accuracy
of 72%, surpassing all previous strategies tested in Section 4.4, except for the
RAG-based technique with GPT-4 and C3 with GPT-4.

Lines 2, 8, and 13 show that, in all three alternatives, the framework
instantiated with GPT-4 obtained the best total accuracy. The Query De-
composition technique led to a total accuracy (Line 13) comparable to the
state-of-the-art tools reported in the Spider and BIRD leaderboards, recalling
again that the Mondial benchmark is far more challenging than any of the
databases used in Spider or BIRD. In particular, this configuration correctly
translated 97% of the simple and medium NL questions, which is a remarkable
achievement. However, it should be stressed that GPT-4 is proprietary and
runs on the OpenAI (paid) platform.

Results for the Medium Language Models. Lines 3, 9, and 14 correspond to the
results of the framework instantiated with LLaMA-3-70B-instruct. Comparing
LaMA-3-70B-instruct (Line 9) and GPT-3.5-turbo-16K (Line 7), the former
achieved a better total accuracy (80%), and better accuracies in all types of
NL questions. When comparing the RAG-only (Line 9) and the RAG with
Query Decomposition techniques (Line 14), the total accuracy remained the
same, but Query Decomposition improved the accuracy for the complex NL
questions.

By contrast, Lines 4 and 10 indicate that DBRX had poor accuracy,
which suggests that this model is not suited for text-to-SQL, although it had
good performance on a coding task (see again Table 2.1).

These results suggest that an open-source, medium-sized model may
replace a proprietary large-sized model. They imply that an NL database
interface may run, with comparable accuracy, on a private platform, rather
than on a proprietary platform, which may mitigate data privacy concerns.
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Results for the Small Language Models. Lines 5, 11, and 15 show the results
for the framework instantiated with Natural-SQL-7B by ChatDB. The model
achieved the second-best accuracy (88%) among all models and alternatives
for simple NL queries, surpassed only by GPT-4 with RAG with Query
Decomposition. However, note that the use of the RAG technique substantially
decreased the accuracy for medium NL questions and did not increase the
accuracy for complex NL queries. By inspecting the sample SQL queries
retrieved, one observes that the examples were of poor quality and referred
to tables not directly related to input the NL question, which presumably
confused the model and led it to generate incorrect SQL queries.

Lines 6 and 12 show the results for the text-to-SQL framework instan-
tiated with Gemma 7B without RAG (Line 6) and with RAG (Line 12). The
performance of the model was significantly less than that of Natural-SQL-
7B by ChatDB. The Phi-3-mini-128K, Mistral-7B-Instruct-text2sql, and Code
Llama 2-13B-instruct-text2-sql models were also tested, but had very poor
performance, which indicates that these models are not a suitable choice.

These results suggest that a Small Language Model fine-tuned for text-
to-SQL, running on a local small server, is a competitive option when the NL
questions are mostly simple.

Additional comments. The RAG technique described in Chapter 3 injects
knowledge of the database schema and the data semantics into a GLM. Overall,
the results suggest that accuracy is improved for large and medium models
but not necessarily for small ones. This is an effect that has to be further
investigated. Apparently, the Sample Retrieval step fetched pairs whose SQL
queries had tables unrelated to the user NL question, which confused the GLM.

In general, an analysis of the incorrect predicted SQL queries uncovered
that the GLMs had difficulties interpreting the Mondial schema, which in-
dicates that the database designer should revise the schema to facilitate the
Schema Linking step given the expected NL questions. The designer should
also consider creating views that introduce some redundancies to reduce the
number of joins required to translate the user NL questions.

For example, quite a few of the incorrect predicted SQL queries reflect a
simple problem – several Mondial tables, such as

MONDIAL_CITY(NAME, COUNTRY, PROVINCE, POPULATION, LATITUDE, LONGITUDE, ELEVATION)

have a column named COUNTRY that is populated with the Country code, not
the Country name. By contrast, the user NL questions refer to Countries by
their names, not by their codes. This can be easily fixed by either changing
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the column name to COUNTRY_CODE or, better still, by creating a view that
includes a predefined column, COUNTRY_NAME, such as

MONDIAL_CITY_VIEW(NAME, COUNTRY_NAME, COUNTRY_CODE, PROVINCE, POPULATION, LATITUDE,

LONGITUDE, ELEVATION)

This simple solution proved quite effective for a real-world private
database with a large schema that was not considered LLM-friendly (NASCI-
MENTO et al., 2024b).

Table 4.9: Results for the different models – Mondial Benchmark.



5 Conclusion and future work

This work investigated how the model size affects the ability of a
Generative AI Language Model (GLM) to support the text-to-SQL task for
databases with large, complex schemas typical of real-world applications. The
work described experiments using a text-to-SQL framework, instantiated with
the Mondial database and a synthetic dataset with 60,000 pairs, pre-computed
for Mondial. The experiments tested GLMs of different sizes under the same
conditions.

The results suggest that for a database with a large, complex schema and
a set of 100 challenging NL questions:

1. The text-to-SQL framework obtained the best results with GPT-4, as
expected from previous results (COELHO et al., 2024; NASCIMENTO
et al., 2024a).

2. When compared with SQLQueryChain, the baseline, the RAG technique
with Question Decomposition led to a significant improvement of the
total accuracy for large and medium models, but not necessarily for small
models.

3. An open-source medium-sized model may achieve an accuracy similar to
a proprietary large-sized model.

4. An open-source small-sized model fine-tuned for text-to-SQL, running
on a small local server, is a competitive option when the NL questions
are mostly simple.

The results reported in the work therefore suggest that an open-source
medium-sized model, coupled with a RAG technique with Question Decom-
position, can achieve sufficient performance to provide the basis for an NL
interface for a real-world database that may run on a private platform rather
than on a proprietary platform, which may mitigate data privacy concerns.

When dealing with a Natural Language database interface based on a
language model, a database designer should also worry about the design of a
synthetic dataset for the database in question, as outlined in Chapter 3 and
Section 4.1.2, to pass knowledge of the database schema and the data semantics
to the language model. That is, the database designer should be concerned with
exposing the database metadata and the data semantics to the language model,
and not just to the programmers or end-users, which is a task different from
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traditional database design. However, when the problem is a mismatch between
the vocabulary of the user NL questions and the vocabulary induced by the
database schema, simply renaming the tables and columns or introducing views
would be a viable solution, as illustrated at the end of Section 4.5.

There are multiple paths for future work. New, more powerful language
models emerge with a high frequency. These models should be considered for
the text-to-SQL task on real-world databases, using the Mondial benchmark
and the framework introduced in this work as a testbed. In another direction,
the technique to create a synthetic dataset for a given database can be en-
hanced to generate more accurate samples. Lastly, other real-world databases
(with questions) could be added to strengthen testing the models.
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